

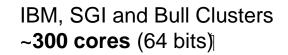
Genómica Comparativa y Biomedicina:

Predicción de Mutantes Deletéreos en el Genoma Humano

Hernán J. Dopazo

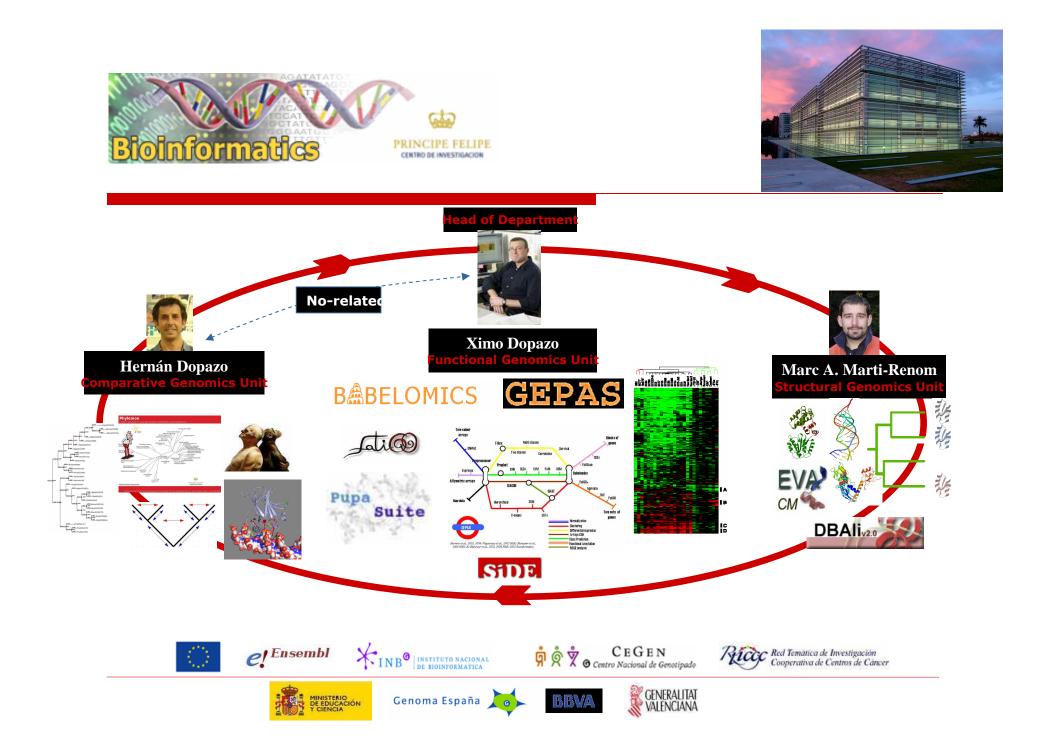
e-mail: hdopazo@cipf.es http://bioinfo.cipf.es/hdopazo

Departamento de Bioinformática Unidad de Genómica Comparativa Centro de Investigación Príncipe Felipe (CIPF) Valencia, España


> Sociedad Española de Genética 3er Curso de Genética Humana Valencia Enero de 2008

http://bioinfo.cipf.es

- 3 Principal Investigators
- 2 Researchers
- 1 Postdoctral Fellow
- 2 Staticians
- 5 Bioinformaticians
- 8 Predoctoral Fellows
- 1 System Manager
- 1 Administrative Assistant


BSC, Barcelona Mare Nostrum 10000 CPUs

tro Nacional de Supercomputación

Barcelona Supercomputing Center

Tool usage around the World

You can see in this map the visits we had during the last day. It is automatically refreshed every five minutes.

Adaptive Evolution of the Human Genome

Positive selection / relaxation- PLoS Comp. Biol., 2006 Tissue-specific genes evolution- working on

Human Disease and Natural Selection

nsSNPs functional prediction- JMB, 2006; HM 2007 Pupas Web server- NAR, 2006

Phylogenetics/omics

Adaptive Evolution of the Human Genome

Positive selection / weak selection- PLoS Comp. Biol., 2006 Tissue-specific genes evolution- working on

Human Disease and Natural Selection

nsSNPs functional prediction- JMB, 2006; HM 2007 Pupas Web server- NAR, 2006

Phylogenetics/omics

Adaptive Evolution of the Human Genome

Positive selection / weak selection- PLoS Comp. Biol., 2006 Tissue-specific genes evolution- working on

Human Disease and Natural Selection

nsSNPs functional prediction- JMB, 2006; HM 2007 Pupas Web server- NAR, 2006

Phylogenetics/omics

Adaptive Evolution of the Human Genome

Positive selection / weak selection- PLoS Comp. Biol., 2006 Tissue-specific genes evolution- working on

Human Disease and Natural Selection

nsSNPs functional prediction- JMB, 2006; HM 2007 Pupas Web server- NAR, 2006

Phylogenetics/omics

Ancient Events of Positive Selection on Human-Chimp Genomes

Main Publications from 2003 to 2007

Inferring Nonneutral Evolution from Human-Chimp-Mouse **Orthologous Gene Trios**

Andrew G. Clark,¹ Stephen Glanowski,³ Rasmus Nielsen,² Paul D. Thomas,⁴ Anish Kejariwal,⁴ Melissa A. Todd,² David M. Tanenbaum,⁵ Daniel Civello,⁶ Fu Lu,⁵ Brian Murphy,³ Steve Ferriera,³ Gary Wang,³ Xianqgun Zheng,⁵ Thomas J. White,⁶ John J. Sninsky,⁶ Mark D. Adams,⁵* Michele Cargill⁶⁺

Open access, freely available online PLOS BIOL

A Scan for Positively Selected Genes in the Genomes of Humans and Chimpanzees

Rasmus Nielsen^{1,2*}, Carlos Bustamante¹, Andrew G. Clark³, Stephen Glanowski⁴, Timothy B. Sackton³, Melissa J. Hubisz¹, Adi Fledel-Alon¹, David M. Tanenbaum⁵, Daniel Civello⁶, Thomas J. White⁶, John J. Sninsky⁶, Mark D. Adams^{5¤}, Michele Cargill⁶

1 Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America, 2 Center for Bioinformatics, University of Copenhagen, Denmark, 3 Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America, 4 Applied Biosystems, Rockville, Maryland, United States of America, 5 Celera Genomics, Rockville, Marvland, United States of America, 6 Celera Diagnostics, Alameda, California, United States of America

OPEN & ACCESS Freely available unline

PLOS COMPUTATIONAL BIOLOGY

Positive Selection, Relaxation, and Acceleration in the Evolution of the Human and Chimp Genome

Leonardo Arbiza¹, Joaquín Dopazo², Hernán Dopazo^{1*}

1 Pharmacogenomics and Comparative Genomics Unit, Centro de Investigación Principe Felipe (CIPF), Valencia, Spain, 2 Functional Genomics Unit, Bioinformatics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain

Initial sequence of the chimpanzee genome and comparison with the human genome

The Chimpanzee Sequencing and Analysis Consortium*

 \checkmark

Z

6

Natural selection on protein-coding genes in the human genome

Carlos D. Bustamante¹, Adi Fledel-Alon¹, Scott Williamson¹, Rasmus Nielsen^{1,2}, Melissa Todd Hubisz¹, Stephen Glanowski³, David M. Tanenbaum³, Thomas J. White⁴, John J. Sninsky⁴, Ryan D. Hernandez¹, Daniel Civello⁴, Mark D. Adams⁵, Michele Cargill⁴* & Andrew G. Clark⁶*

More genes underwent positive selection in chimpanzee evolution than in human evolution

Margaret A. Bakewell, Peng Shi, and Jianzhi Zhang*

Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109

Communicated by Morris Goodman, Wayne State University School of Medicine, Detroit, MI, February 26, 2007 (received for review Dece

Observations of numerous dramatic and presumably adaptive number of deficiencies. First, both studies used phenotypic modifications during human evolution prompt the outgroup, to distinguish between human-spec common belief that more genes have undergone positive Darwin-

specific nucleotide substitutions, because of the

Cell, Vol. 119, 1027-1040, December 29, 2004, Copyright ©2004 by Cell Press

Accelerated Evolution of Nervous System Genes in the Origin of Homo sapiens

Steve Dorus,1,2,4 Eric J. Vallender,1,2,4 Patrick D. Evans,1,2 Jeffrey R. Anderson,1 Sandra L. Gilbert,¹ Michael Mahowald,¹ Gerald J. Wyckoff.^{1,5} Christine M. Malcom.^{1,3} and Bruce T. Lahn^{1,*}

(Jerison, 1973; Byrne and Wh 1990; Matsuzawa, 2001). Mosis of brain evolution has eme able discussion. Of particula garding what genes underlie

	#PSGs	GO terms (Biol. Process)	GO- PSGs diffs	Mult. Test Corr	Diff. PS-RX	H-C diff. analy	ML or Ka/Ks
Clark, et al. Science 2003 <mark>Celera</mark>	7,645 1,547H 1,534C	Olfactation, Sensory perception' G-PCR	YES	NO	NO	YES	ML
Nielsen, et al. PLoS Biol 2005 Celera	8,079 733 (H-C) 35 p<0.05	Immune response,Sensory perception, Spermatogenesis, Apoptosis, Cell cyle					
The Chimp Seq Anal Consortium Nature 2005	13,454: 585 (H-C)	Spermatogenesis, Perception of sound, Reproduction, Olfactation, Immune response	YES NO				
Bustamante, et al. Nature 2005 Celera	10,767: 304H	Apoptosis, Gametogenesis, Immune response, Sensory perception, mRNA transcription, Transcription factor					
Arbiza, et al. PLoS CB2006 Ensembl	13,198 108-H 577-C	Transcription factor, Cell. Prot. Metab. Olfactation, Immune response, G-PCR	NO				
Zhang, J. et al 2007 PNAS 2007 Ensembl	13,188Ñ 154H, 233C 2H, 21C	Protein metabolism, mRNA transcrip., Ectoderm development, stress response, G PCR signaling	YES				

	#PSGs	GO terms (Biol. Process)	GO- PSGs diffs	Mult. Test Corr	Diff. PS-RX	H-C diff. analy	ML or Ka/Ks
Clark, et al. Science 2003 <mark>Celera</mark>	7,645 1,547H 1,534C	Olfactation, Sensory perception' G-PCR	YES	NO	NO	YES	ML
Nielsen, et al. PLoS Biol 2005 <mark>Celera</mark>	8,079 <mark>733 (H-C)</mark> 35 p<0.05	Immune response,Sensory perception, Spermatogenesis, Apoptosis, Cell cyle		YES	NO	NO	ML
The Chimp Seq Anal Consortium Nature 2005	13,454: 585 (H-C)	Spermatogenesis, Perception of sound, Reproduction, Olfactation, Immune response	YES NO				
Bustamante, et al. Nature 2005 Celera	10,767: 304H	Apoptosis, Gametogenesis, Immune response, Sensory perception, mRNA transcription, Transcription factor					
Arbiza, et al. PLoS CB2006 Ensembl	13,198 108-H 577-C	Transcription factor, Cell. Prot. Metab. Olfactation, Immune response, G-PCR	NO				
Zhang, J. et al 2007 PNAS 2007 Ensembl	13,188Ñ 154H, 233C 2H, 21C	Protein metabolism, mRNA transcrip., Ectoderm development, stress response, G PCR signaling	YES				

	#PSGs	GO terms (Biol. Process)	GO- PSGs diffs	Mult. Test Corr	Diff. PS-RX	H-C diff. analy	ML or Ka/Ks
Clark, et al. Science 2003 <mark>Celera</mark>	7,645 1,547H 1,534C	Olfactation, Sensory perception' G-PCR	YES	NO	NO	YES	ML
Nielsen, et al. PLoS Biol 2005 <mark>Celera</mark>	8,079 <mark>733 (H-C)</mark> 35 p<0.05	Immune response,Sensory perception, Spermatogenesis, Apoptosis, Cell cyle		YES	NO	NO	ML
The Chimp Seq Anal Consortium Nature 2005	13,454: 585 (H-C)	Spermatogenesis, Perception of sound, Reproduction, Olfactation, Immune response	YES NO	YES	YES	YES	Ka/Ks
Bustamante, et al. Nature 2005 Celera	10,767: 304H	Apoptosis, Gametogenesis, Immune response, Sensory perception, mRNA transcription, Transcription factor					
Arbiza, et al. PLoS CB2006 Ensembl	13,198 108-H 577-C	Transcription factor, Cell. Prot. Metab. Olfactation, Immune response, G-PCR	NO				
Zhang, J. et al 2007 PNAS 2007 Ensembl	13,188Ñ 154H, 233C 2H, 21C	Protein metabolism, mRNA transcrip., Ectoderm development, stress response, G PCR signaling	YES				

	#PSGs	GO terms (Biol. Process)	GO- PSGs diffs	Mult. Test Corr	Diff. PS-RX	H-C diff. analy	ML or Ka/Ks
Clark, et al. Science 2003 <mark>Celera</mark>	7,645 1,547H 1,534C	Olfactation, Sensory perception' G-PCR	YES	NO	NO	YES	ML
Nielsen, et al. PLoS Biol 2005 <mark>Celera</mark>	8,079 <mark>733 (H-C)</mark> 35 p<0.05	Immune response,Sensory perception, Spermatogenesis, Apoptosis, Cell cyle		YES	NO	NO	ML
The Chimp Seq Anal Consortium Nature 2005	13,454: <mark>585 (H-C)</mark>	Spermatogenesis, Perception of sound Reproduction, Olfactation, Immune response	YES NO	YES	YES	YES	Ka/Ks
Bustamante, et al. Nature 2005 <mark>Celera</mark>	10,767: <mark>304H</mark>	Apoptosis, Gametogenesis, Immune response, Sensory perception, mRNA transcription, Transcription factor			NO	NO	МК
Arbiza, et al. PLoS CB2006 Ensembl	13,198 108-H 577-C	Transcription factor, Cell. Prot. Metab. Olfactation, Immune response, G-PCR	NO				
Zhang, J. et al 2007 PNAS 2007 Ensembl	13,188Ñ 154H, 233C 2H, 21C	Protein metabolism, mRNA transcrip., Ectoderm development, stress response, G PCR signaling	YES				

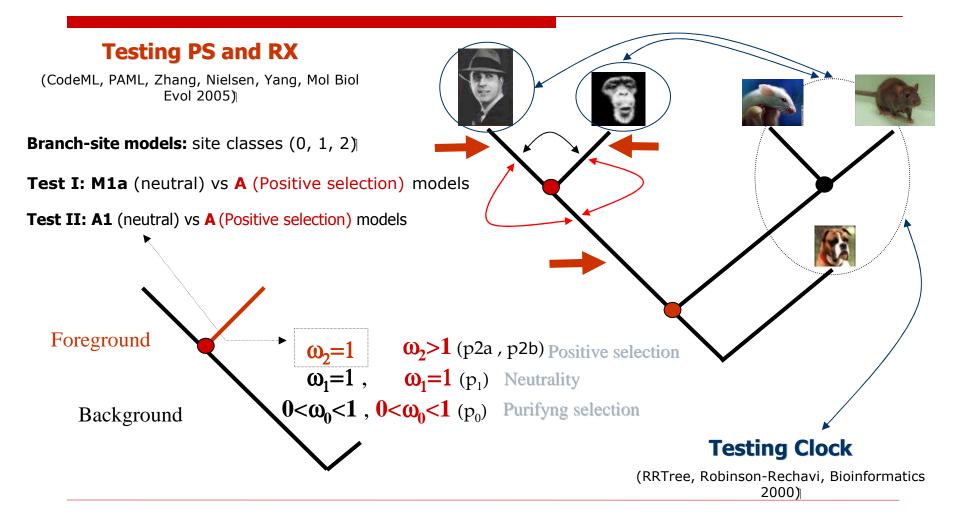
	#PSGs	GO terms (Biol. Process)	GO- PSGs diffs	Mult. Test Corr	Diff. PS-RX	H-C diff. analy	ML or Ka/Ks
Clark, et al. Science 2003 Celera	7,645 1,547H 1,534C	Olfactation, Sensory perception' G-PCR	YES	NO	NO	YES	ML
Nielsen, et al. PLoS Biol 2005 <mark>Celera</mark>	8,079 <mark>733 (H-C)</mark> 35 p<0.05	Immune response,Sensory perception, Spermatogenesis, Apoptosis, Cell cyle		YES	NO	NO	ML
The Chimp Seq Anal Consortium Nature 2005	13,454: <mark>585 (H-C)</mark>	Spermatogenesis, Perception of sound Reproduction, Olfactation, Immune response	YES NO	YES	YES	YES	Ka/Ks
Bustamante, et al. Nature 2005 <mark>Celera</mark>	10,767: <mark>304</mark> H	Apoptosis, Gametogenesis, Immune response, Sensory perception, mRNA transcription, Transcription factor			NO	NO	МК
Arbiza, et al. PLoS CB2006 Ensembl	13,198 108-H 577-C	Transcription factor, Cell. Prot. Metab. Olfactation, Immune response, G-PCR	NO	YES	YES	YES	ML
Zhang, J. et al 2007 PNAS 2007 Ensembl	13,188Ñ 154H, 233C 2H, 21C	Protein metabolism, mRNA transcrip., Ectoderm development, stress response, G PCR signaling	YES				

	#PSGs	GO terms (Biol. Process)	GO- PSGs diffs	Mult. Test Corr	Diff. PS-RX	H-C diff. analy	ML or Ka/Ks
Clark, et al. Science 2003 <mark>Celera</mark>	7,645 1,547H 1,534C	Olfactation, Sensory perception' G-PCI	R YES	NO	NO	YES	ML
Nielsen, et al. PLoS Biol 2005 <mark>Celera</mark>	8,079 <mark>733 (H-C)</mark> 35 p<0.05	Immune response,Sensory perception Spermatogenesis, Apoptosis, Cell cyle		YES	NO	NO	ML
The Chimp Seq Anal Consortium Nature 2005	13,454: <mark>585 (H-C)</mark>	Spermatogenesis, Perception of sound Reproduction, Olfactation, Immune response	d, YES NO	YES	YES	YES	Ka/Ks
Bustamante, et al. Nature 2005 <mark>Celera</mark>	10,767: <mark>304H</mark>	Apoptosis, Gametogenesis, Immune response, Sensory perception, mRNA transcription, Transcription factor			NO	NO	МК
Arbiza, et al. PLoS CB2006 Ensembl	13,198 108-H 577-C	Transcription factor, Cell. Prot. Metab. Olfactation, Immune response, G-PCR		YES	YES	YES	ML
Zhang, J. et al 2007 PNAS 2007 <mark>Ensembl</mark>	13,188Ñ 154H, 233C 2H, 21C	Protein metabolism, mRNA transcrip., Ectoderm development, stress response, G PCR signaling	YES	YES NO	YES	YES	ML

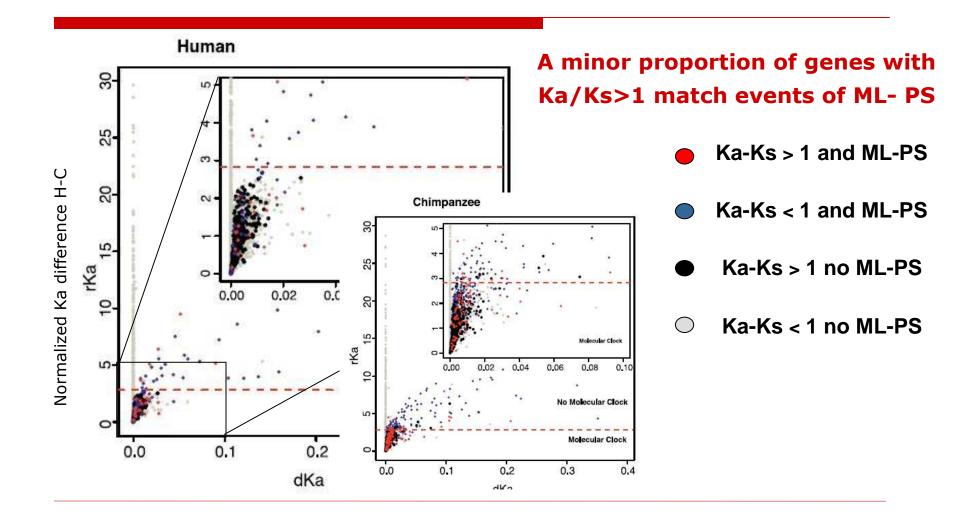
Our work...why?

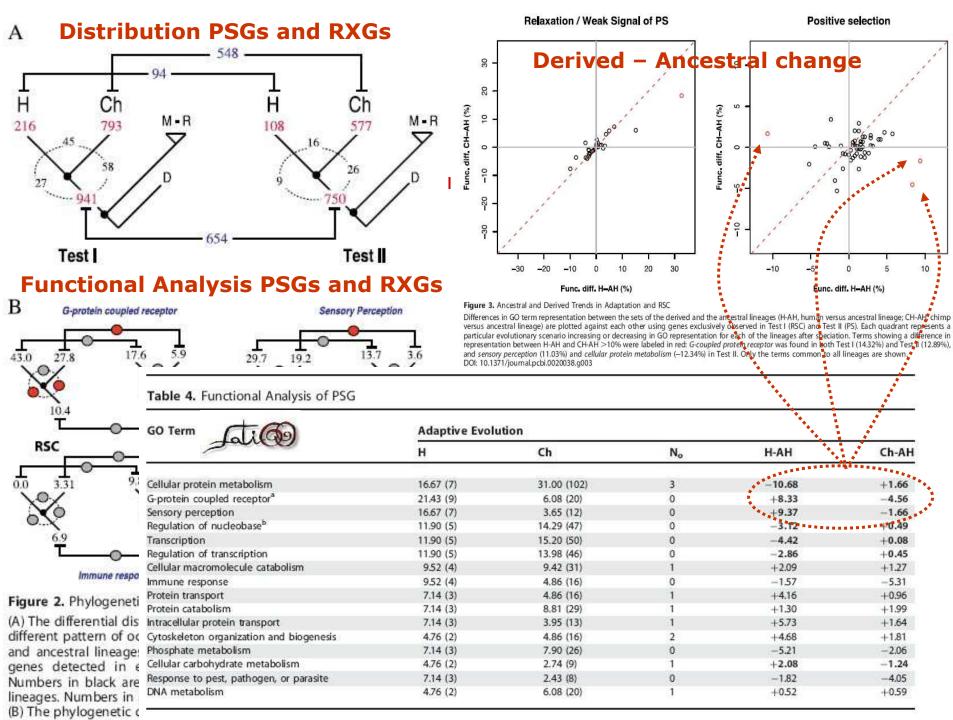
Main Questions

Positive Selection, Relaxation, and Acceleration in the Evolution of the Human and Chimp Genome


Leonardo Arbiza¹, Joaquín Dopazo², Hernán Dopazo^{1*}

1 Pharmacogenomics and Comparative Genomics Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain, 2 Functional Genomics Unit, Bioinformatics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain


- Which are the full set of genes and functions that evolve outside of the molecular clock hypothesis?
- Which are the full set of genes and functions that were positively selected during evolution of each species, and which show evidence of weak selection/relaxation?
- How do these sets of genes compare amongst themselves and in between derived and ancestral lineages at a functional level?


Positive selection, relaxation and clock

Derived and ancestral lineages

Clock assumption - Ka/Ks ratio - ML branch-site model

shown in human, in chimp, and in the ancestral lineage as depicted in

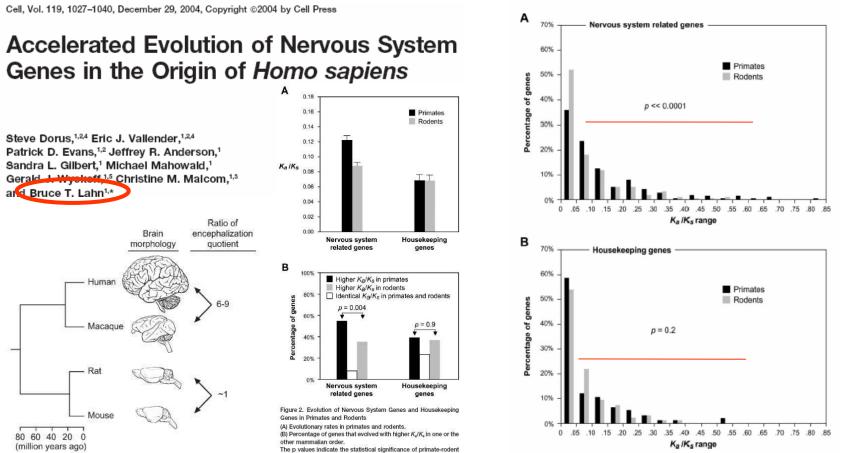

GO Description	Adaptive Evolut	ion		Relaxation of Selective Constraints/Weak Signal of PS					
	Human	Chimpanzee	Ancestral	Human	Chimpanzee	Ancestral			
Sensory perception	EDN3 GRM6 HKR3	ABCA4 COL1A1 ERCC8	CCL1 CCL3 COL11A1	DFNB31 O2AG1 OR1072	CNGA2 GUCY2D O10D4	BBS2 CNGA1 COL1A2			
	OR2A14 OR51D1 OR5D18 TS1R1	GJA3 MYH9 MYO9A OR52N1OR5I1 ROBO1 USH1C	CRB2 DSPP GPRC5D ILBRA KPTN MYH14 O10D4 OR10T2OR1B6 OR5A1 OR5P3 PROM1 RP1	OR10K1 OR10Q1 OR2B6 OR3A3 OR4C16 OR51G1 OR52E5 OR52N1 OR5J2 OR5T1 OR6K2 OR8J3	OR13G1 OR2A12 OR2B2 OR2F2 OR2L2 OR4C13 OR4FE OR4K13 OR51B4 OR52E2 OR6P1 OR8I2	GUCY2D OPA3 OPN1SW OR11L1 OR2F2 OR4A16 OR4C16 OR4E2 OR51B4 OR5111 OR51V1 OR571			
			TAS1R3 TAS2R38 TAS2R41 TRPA1		OR9A4 PCDH15 TAS2R60 TECTA	OR5AS1 OR8J1 OR8J3 TNFRSF11A TRPM8			
G-PCR signalling pathway ^a	GPR111 HKR3 OR52W1	ADRA1B ADRA2A SORCS1	AAR5 ADRA1A AS1R3	CAP1 IMPG2 OR10T2	ADRA1D CALM1ECE2	TULP2 OR4C15 OR4E2 OR5T2			
	PTGER4 TS1R1	GRPR AKAP12 TAAR1 TAAR6 PARD3 HTR5A EDG8 OR8D2	CCL3 CCR2 CD3 EDRD2 ENPP2 GABBR1 GALR2 GAP43 GLP1R GPCR116	OR3A3 Q8NG2 Q8NGU0 Q8NH71 Q8NH88 RBP3 TSHR	ELSR2 OR2B2 OR2T4 OR4C11 OR52M1 OR6K6 PLCE1 R4C13 RAMP3	PYY TSHR			
		2008 04802	GPR154 GPR43 HTR1D IL8RA MRGPRD OR13A1 PLCE1 PTHR1 RAI3	ISHK	PLLET NACTS NAMPS				
Immune response ^b	CCL4 ITGAL ITGB1	AFP AMBP CSF1R CSF2RB	AHSG ARTS1 AZGP1 CCL1		CRIP1 ELF4 IVNS1ABP	CAMP CFH C1QG GSR			
		GABBR1 HFE HLA-G HLA-J IGSF2 IKBKE IL 1F10 IL1R1 KLF6 OTUB1 SEMA7A STAT5A TCF7 UBD	CCL3 CCR2 CD72 CD80 CRISP3 CSF3 D3E EXOSC9 FCGR2B FCN2 FTH1 GBP1 GBP2 HLA-DOB HLA-F		ODZ1 PARP4 STAB1	INHA PRF1 PTGS2			
			HLA-G HLA-H ICOS IL18 ITGAL LIRA4 LTB4R LY75 NFX1 S100A9 STAT3 TLR1 TREM1 TRIM22						
DNA/RNA ^c	CHTF18 NASP	ARID1A ERCC8 FANCG LIG1 MSH4 MUS81 MYST3 POLD3 POLI RAD23B RFC1 SUPT6H TOPBP1 TP73 UBE1 UV39H2 XRCC4	ARSL CASKIN1 CIDEA DCP2DHX15 ELAVL4 EXOSC9 HILS1 NEIL2 NF1B NFIC NFX1 NOLC1 OGG1 PARP2 POLE2 POLG POLM POLN RAD51L3	EPRS SUPT6H	ADRA1D CHD5 CHTF18 DARS IVINS1ABP NAP1L5 ORCL3 PAPR4 POLRMT SHPRH SUPT5H	ADARB2 MCM3AP MRE11A MSH2 POLQ POLRMUT RPUSD4 SMN1 CYCS SUPT6H SYV XRCC5			
Transcription ^d	ARNT2 KLF14 NFKB2	ASCL1 CDC5L CEPPZ COA5 EDF1 ERCC8 FU1 GU1 HUWE1 KCNH5	ATF4 BGALP BLZF1 CD80 CNOT4 DMRTC2 EGR4 ERG ETV2 MEF2B MXD4	AGGF1 CREM FOXI1 GLIS3 GRIP1 LHX1 MYEF2 POLR3K SUPT6H TITF1	CHD5 E2F1 ELF4 GMEB2 HNF4A HOXA1 HOXA3 KLF3 NOC3L PHF19	CEBPZ ETS2 PER2 PMFBP1 POLRMT SOX30 SP110 SUPT6H TERF2IP			

Table 5. A Small Sample of the Human and the Chimp Genes Deduced under Tests I and II

Conclusions I

- Adaptive evolution is an infrequent process shaping the pattern of divergence between human and chimp genomes.
- Use of rate approaches (Ka/Ks) for concentrating cases of positive selection should be discarded in favor of more sensitive methodologies.
- Functional classes encompassed by the sets of genes evolving without clock and positive selection were the same and in similar proportions.
- Our analysis using the first release of the Chimp Genome from Ensembl database probable collects false positive cases of PSGs
- We are running a new analysis using an updated Chimp and Macaca genome

Positive selection: Nervous System

disparities.

Brain genes are between the most conserved genes analysed in PS studies

Open access, freely available online PLOS BIOLOGY

A Scan for Positively Selected Genes in the Genomes of Humans and Chimpanzees

Rasmus Nielsen^{1,2}, Carlos Bustamante¹, Andrew G. Clark³, Stephen Glanowski⁴, Timothy B. Sackton³, Mensser, Hubisz¹, Adi Fledel-Alon¹, David M. Tanenbaum⁵, Daniel Civello⁶, Thomas J. White⁶,

John J. Sninsky⁶, Mark D. Adams^{5¤}, Michele Cargill⁶

1 Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America, 2 Center for Bioinformatics, University of Copenhagen, Denmark, 3 Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America, 4 Applied Biosystems, Rockville, Maryland, United States of America, 6 Celera Diagnostics, Alameda, California, United States of America, 6 Celera Diagnostics, Alameda, California, United States of America, 6 Celera Diagnostics, Alameda, California, United States of America, 6 Celera Diagnostics, Alameda, California, United States of America, 6 Celera Diagnostics, Alameda, California, United States of America

Since the divergence of humans and chimpanzees about 5 million years ago, these species have undergone a remarkable evolution with drastic divergence in anatomy and cognitive abilities. At the molecular level, despite the small overall magnitude of DNA sequence divergence, we might expect such evolutionary changes to leave a noticeable signature throughout the genome. We here compare 13,731 annotated genes from humans to their

Table 1. Biological Process Categories with an Excess ofPutatively Positively Selected Genes (Nominal p less than 0.05;MWU) among a Total of 133 Biological Process Categories

Biological Process	Number of Genes	<i>p</i> -Value
Immunity and defense	417	0.0000
T-cell-mediated immunity	82	0.0000
Chemosensory perception	45	0.0000
Biological process unclassified	3,069	0.0000
Olfaction	28	0.0004
Gametogenesis	51	0.0005
Natural killer-cell-mediated immunity	30	0.0018
Spermatogenesis and motility	20	0.0037
Inhibition of apoptosis	40	0.0047
Interferon-mediated immunity	23	0.0080
Sensory perception	133	0.0160
B-cell- and antibody-mediated immunity	57	0.0298

Note that the categories overlap; e.g., "T-cell-mediated immunity" is entirely nested within "immunity and defense."

DOI: 10.1371/jpumal.pbio.0030170.t001

Table 2. Test for an Excess of Putatively Positively Selected Genes by Tissue Type

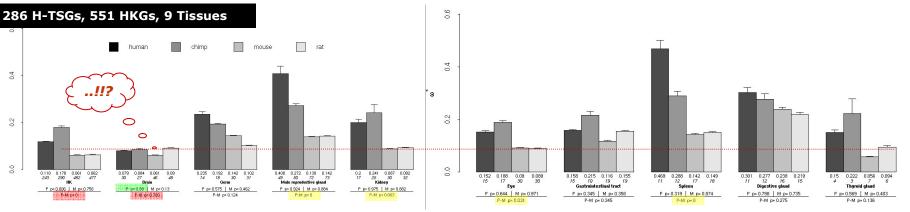
Tissue of Maximal Expression	Number of Genes	p-Value
Testis	247	0.0002
Thyroid	66	0.0287
Thymus	82	0.0599
Prostate	76	0.0902
Fetal_liver	114	0.1668
Salivary_gland	195	0.1696
Whole_blood	405	0.239
Heart	120	0.2906
Lung	64	0.3381
Trachea	47	0.3976
Liver	244	0.4468
Uterus	51	0.493
Adrenal_gland	70	0.5434
Spleen	134	0.5582
Pancreas	358	0.6063
Pituitary_gland	60	0.6493
Placenta	179	0.7566
Cortex	36	0.7696
Kidney	179	0.801
Amygdala	43	0.8398
Corpus_callosum	101	0.8909
Caudate_nucleus	36	0.8945
Thalamus	33	0.9018
Fetal_brain	201	0.912
Over	133	0.9275
Whole_brain	83	0.965
Cerebellum	93	0.9903
Spinal_cord	14	1

Main Questions

How different is the evolution of human brain-specific genes from:

- others human T-SG's?
- and in between lineages?

Are there any effects of using alternative statistical methods

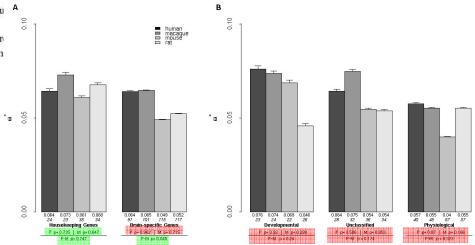

- Rate estimation?
- Mean estimation?

з

Tissue-specific Genes			SM-I	.i	SM-ML			SEWM-ML			
Tissue-specific Genes		ω	N	р	ω	N	р	ωª	SE	N	р
	P	0.273	547	0.000*	0.251	547	0.000*	0.121	3.6e-03	419	0.000
Housekeeping	Μ	0.138	550	-0.000*	0.114	550	0.000-	0.060	1.7e-03	513	0.000
Davia	Р	0.454	51	0.006*	0.386	51	0.015*	0.096	2.2e-03	44	0.61
Brain	Μ	0.223	51	0.006*	0.190	51	0.015*	0.084	8.0e-04	50	0.01
Germ	Р	0.501	32	0.053	0.496	31	0.061	0.261	5.1e-03	28	0.075
Germ	Μ	0.332	33	0.055	0.286	33	0.001	0.141	1.5e-03	32	0.073
Male reproductive gland	P	0.699	75	0.000*	0.686	73	0.000*	0.273	3.6e-03	71	0.000
Male reploductive gland	Μ	0.295	74	0.000-	0.245	75	0.000~	0.140	7.0e-04	73	0.000
Kidney	P	0.485	32	0.004*	0.392	32	0.025*	0.199	6.0e-03	29	0.028
Kidney	Μ	0.218	33	0.004*	0.186	33	0.023-	0.109	1.5e-03	32	0.028
Para	Р	0.400	32	0.058	0.318	31	0.107	0.164	2.9e-03	27	0.10
Eye	Μ	0.252	32	0.058	0.219	32	0.197	0.104	1.6e-03	31	0.101
Gastrointestinal tract	Р	0.467	19	0.157	0.379	19	0.171	0.226	5.2e-03	17	0.09
Gastrointestinai tract	Μ	0.291	19	0.157	0.234	19	0.171	0.148	3.2e-03	19	0.09
C	Р	0.761	19	0.001*	0.663	19	0.002*	0.379	9.9e-03	17	0.001
Spleen	Μ	0.245	19	0.001~	0.216	19	0.002*	0.175	4.0e-03	18	0.001
Digestive alond	P	0.369	17	0.957	0.350	17	0.709	0.274	8.6e-03	15	0.70
Digestive gland	Μ	0.374	17	0.957	0.315	17	0.709	0.254	6.6e-03	16	0.70
Themaid along	P	0.594	7	0.074	0.484	7	0.007	0.283	1.3e-02	6	0.042
Thyroid gland	M	0.194	7	0.074	0.183	7	0.097	0.083	3.4e-03	7	0.043

Table 1. Evolution of tissue-specific genes along primate and murid lineages using pairwise computing methods

Notes. – P, primates. M, murids. SM-Li, simple mean using Li (1993) method. SM-ML, simple mean computed by means of a pairwise maximum likelihood method. SEWM-ML, standard error weighted mean computed by ML. SE, standard error. N, number of genes. Statistical methods are described in *Material and Methods*. Tissue definitions as specified in Table S1, Supplementary Material online.


ω–SEWM estimation using a free-branch ML model

Re-Analysis of Dorus, et al. (2004) data

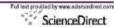
Tri in a			SM-L	i .	S	M-M	L	SEWM-ML				
Tissue-specific G	enes	ω^{b}	n	р	ω	n	р	ωª	SE	n	р	
	Р	0.059	55	0127	0.078	55	0.593	0.052	7.5e-04	33	0.810	
Housekeeping	Μ	0.071	55	0.137	0.066	55	0.595	0.055	7.6e-04	39	0.810	
N	Р	0.123	156	0.002*	0.095	154	0.141	0.059	3.0e-04	122	0.100	
Nervous system	Μ	0.091	156	0.002*	0.077	156	0.141	0.047	2.9 e-04	135	0.108	
D. 1	Р	0.140	37	0.010*	0.108	37	0.004	0.065	1.2e-03	28	0 550	
Developmental	Μ	0.084	37	0.012*	0.065	37	0.094	0.053	1.2e-03	28	0.558	
Unclassified NS	Р	0.099	47	0.080	0.086	47	0.527	0.070	9.7e-04	37	0.050	
Unclassified NS	Μ	0.074	47	0.080	0.072	47	0.327	0.044	5.8e-04	43	0.059	
	Р	0.127	72	0.100	0.094	70	0.604	0.052	4.1e-04	57	0.700	
Physiological	Μ	0.104	72	0.199	0.087	72	0.684	0.046	3.1e-04	64	0.588	

Notes. –The dataset consists of nervous system and housekeeping genes which are a su A and 58%, respectively) of those used by Dorus et al. (2004).

^b ω was calculated as the ratio of average dN and average dS using values of gene classes r Dorus et al. (2004). All other estimates of ω were pairwise-computed *de novo* from alignments. See details in *Results* sections. Abbreviations defined in Table 1.

ω-SEWM estimation using a free-branch ML model

Some of the H-TSG's under PS (Test II)


Table 3

Human tissue-specific genes under positive selection

Tissue	N	CH	Н	Gene Name	Chr	p ^a	Full Gene Name ^b	Function ^b
Brain	51	5		GRK1	13	*	G protein-coupled receptor kinase 1	Phosphorylates rhodopsin thereby initiating its deactivation. Defects in GRK1 are the cause of night blindness oguchi type-2.
	<i>2</i> ,		÷	TULP2	19	**	Tubby like protein 2	Unknown
Germ	33	1	2	CST9L	20	*	Cystatin 9-like (mouse)	Some of the cystatin superfamily members are active cysteine protease inhibitors, while others have lost or perhaps never acquired this inhibitory activity.
				ADAM20	14	**	ADAM metallopeptidase domain 20	May be involved in sperm maturation and/or fertilization
				TMCO5	15	*	Transmembrane and coiled-coil domains 5	Muscle contraction
Male Reprod.	75	9	6	BOLL	2	**	Bol-like (Drosophila)	This gene encodes an RNA-binding protein which may be required during spermatogenesis. Doss of this gene function results in the absence of sperm in semen (azoospermia).
Gland				HIST1H1T	6	Alt Alt	Histone 1, H1t	Histones h1 are necessary for the condensation of nucleosome chains into higher order structures. This histone is a testis-specific h1 variant that appears during meiosis in spermatogenesis.
				TCP11	6	**	T-complex 11 (mouse)	Unknown
				PEPP-2	х	*	Homeobox protein, PEPP Subfamily, 2	Regulates downstream genes and biological events in the testis
Kidney	33	2	1	SLC22A8	11	**	Solute carrier family 22 (organic anion	The protein is involved in the sodium-independent transport and excretion of organic anions, some of

Conclusions II

- Estimates of average dN/dS ratios are sensitive to the methods used for combining estimates and the methods used for estimation of dN/dS.
- Brain specific genes show no evidence for acceleration in the primate lineage compared to many other tissue specific gene categories.
- There is no evidence for an elevation in the dN/dS ratio in brain-specific genes in humans compared to chimpanzees, neither between primates and murids taxa.
- The number of brain-specific genes showing evidence for positive selection is higher in the chimpanzee than in the human evolutionary lineage.
- While there undoubtedly has been much positive selection relating to brain function during the evolution of modern man, this selection has not been so pervasive that is has resulted in a detectably accelerated rate of molecular evolution.

Did brain-specific genes evolve faster in humans than in chimpanzees?

Peng Shi^{*}, Margaret A. Bakewell^{*} and Jianzhi Zhang

Opinion

Department of Ecology and Evolutionary Biology, University of Michigan, 1075 Natural Science Building, 830 North University Avenue, Ann Arbor, MI 48109, USA

However...

TIG, november 2006

Table 1. Evolutionary rates of brain-specific genes and other genes in humans a	ans and chimpanzees
---	---------------------

Tissue-specificity definitions	Genes	No. of genes	Human lineage		Chimpanzee lineage		eage			
			n _H a	<i>s</i> _H ^b	w _H °	n _C ^a	s _C ^b	wc°	w _H /w _C ^d	n _H ∕n _C °
Microarray (2×)	Brain-specific genes Other tissue-specific genes Non-tissue-specific genes All genes Ratio of brain to other tissue-specific Ratio of brain to non-tissue-specific	249 1544 12 162 13 955	286 2897 21 710 24 893	571 3621 28 241 32 432	0.205 0.327 0.314 0.313 0.626 0.652	318 2833 20 394 23 546	655 3765 29 620 34 040	0.198 0.307 0.281 0.282 0.646 0.706	1.03 1.06 1.12**** 1.11**** 0.97 0.92	0.90 1.02 1.06 1.06 0.88 0.84*
Microarray (4×)	Brain-specific genes Other tissue-specific genes Non-tissue-specific genes Ratio of brain to other tissue-specific Ratio of brain to non-tissue-specific	72 502 13 381	91 973 23 829	182 1178 31 071	0.205 0.337 0.313 0.607 0.653	104 962 22 480	192 1176 32 671	0.221 0.334 0.281 0.662 0.786	0.93 1.01 1.11**** 0.92 0.83	0.88 1.01 1.06 0.87 0.83
EST	Brain-specific genes Other tissue-specific genes Non-tissue-specific genes Ratio of brain to other tissue-specific Ratio of brain to non-tissue-specific	165 819 12 971	294 1963 22 637	430 2083 29 920	0.279 0.385 0.309 0.725 0.903	324 1891 21 331	493 2313 31 234	0.268 0.334 0.279 0.804 0.962	1.04 1.15 ^{**} 1.11 ^{****} 0.90 0.94	0.91 1.04 1.06 0.87 0.85
SAGE	Brain-specific genes Other tissue-specific genes Non-tissue-specific genes Ratio of brain to other tissue-specific Ratio of brain to non-tissue-specific	209 632 13 114	356 1214 23 323	494 1485 30 454	0.295 0.334 0.313 0.883 0.942	368 1238 21 939	550 1580 31 911	0.273 0.320 0.281 0.854 0.974	1.08 1.04 1.11 ^{****} 1.03 0.97	0.97 0.98 1.06 0.99 0.91
Nervous system genes ^f	Nervous system genes Developmental Physiological Unclassified Other genes Ratio of nervous system to other genes Ratio of developmental to other genes	146 37 61 48 13 809	196 53 59 85 24 697	341 91 135 115 32 091	0.235 0.237 0.178 0.300 0.314 0.748 0.754	193 47 66 80 23 353	407 113 170 124 33 633	0.193 0.169 0.263 0.283 0.682 0.596	1.22 1.40 1.12 1.14 1.11** 1.10 1.26	1.02 1.13 0.89 1.06 1.06 0.96 1.07
Overlapping sets ⁹	Brain-specific genes Other genes Ratio of brain to other genes	74 13 881	86 24 808	176 32 256	0.199 0.314 0.632	117 23 429	216 33 824	0.221 0.283 0.781	0.90 1.11**** 0.81	0.73 1.06 0.69**

Human Disease & Evolution

doi:10.1016/j.jmb.2006.02.067

J. Mol. Biol. (2006) 358, 1390-1404

JMB

Available online at www.sciencedirect.com

Selective Pressures at a Codon-level Predict Deleterious Mutations in Human Disease Genes

Leonardo Arbiza¹, Serena Duchi¹, David Montaner², Jordi Burguet² David Pantoja-Uceda³, Antonio Pineda-Lucena³, Joaquín Dopazo² and Hernán Dopazo^{1*}

¹Pharmacogenomics and Comparative Genomics Unit Centro de Investigación Príncipe Felipe (CIPF). Autopista del Saler, 16-3, 46013 Valencia Spain

²Functional Genomics Unit Bioinformatics Department Centro de Investigación Príncipe Felipe (CIPF). Autopista del Saler, 16-3, 46013 Valencia Spain

³Structural Biology Laboratory Medicinal Chemistry Department, Centro de Investigación Príncipe Felipe (CIPF). Autopista del Saler 16-3, 46013 Valencia, Spain

*Corresponding author

Deleterious mutations affecting biological function of proteins are constantly being rejected by purifying selection from the gene pool. The non-synonymous/synonymous substitution rate ratio (ω) is a measure of selective pressure on amino acid replacement mutations for protein-coding genes. Different methods have been developed in order to predict nonsynonymous changes affecting gene function. However, none has considered the estimation of selective constraints acting on protein residues. Here, we have used codon-based maximum likelihood models in order to estimate the selective pressures on the individual amino acid residues of a well-known model protein: p53. We demonstrate that the number of residues under strong purifying selection in p53 is much higher than those that are strictly conserved during the evolution of the species. In agreement with theoretical expectations, residues that have been noted to be of structural relevance, or in direct association with DNA, were among those showing the highest signals of purifying selection. Conversely, those changing according to a neutral, or nearly neutral mode of evolution, were observed to be irrelevant for protein function. Finally, using more than 40 human disease genes, we demonstrate that residues evolving under strong selective pressures ($\omega < 0.1$) are significantly associated (p < 0.01) with human disease. We hypothesize that non-synonymous change on amino acids showing $\omega < 0.1$ will most likely affect protein function. The application of this evolutionary prediction at a genomic scale will provide an *a priori* hypothesis of the phenotypic effect of non-synonymous coding single nucleotide polymorphisms (SNPs) in the human genome.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: comparative genomics; deleterious mutations; human diseases; purifying selection; codon-based models

Medicine believes in genetics, less in bioinfo and almost nothing in evolutionary biology!!

Medicine seldom takes into account evolutionary biology's conclusions

- Parasites should evolve towards a bening coexistence with their host...
- It strongly depends on mode of inheritance (Paul Ewald, 1996)

Scientists working in biomedicine rarely recognize basic evolutionary biology concepts

- PAML matrix
- Positional homology

Evolutionary Thinking in Biomedicine Notable exceptions

1996. Paul M. Ewald. Evolution of infectious disease

- "Parasites vertically inherited should evolve toward a bening coexistence with their host".
- 1996. R. Nesse and G. Williams. Why we get sick? The new science of Darwinian Medicine
 - "Why in a body of such exquisite design, are there a thousands flaws and fraities that make us vulnerable to disease?... They suggest new ways of addressing illness"

1998. Stephen C. Stearns. Evolution in health and disease

- "... our body was shaped by natural selection to maximize reproductive success in ancestral environments".
- 2002. Steve A. Frank. Immunology and Evolution of Infectious disease
 - Bring the gap between immunology and epidemiology.

Example: SNP's and Disease

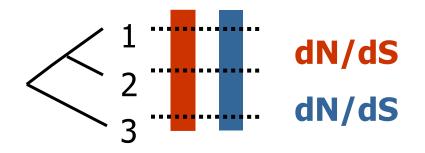
SNPs can cause alterations of gene function by...

- □ Alterations in expression level
- Alternative splicing
- □ Alteration (or loss) of gene product function
 - **Changes in the stability of the protein**
 - **Functionally important residues**
 - Phylogenetic conservation

Natural selection working at codon level

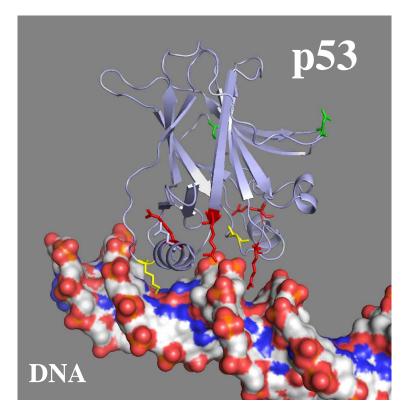
Main Question

Could an estimator of the selective preassures acting at codon level (ω) be used as a predictor of the phenotype effect of SNP's?


Detecting Positive & Negative Selection

Site-specific models

average dN/dS over lineages but differentiate over sites


- ML models for positive selection
 - M1a vs M2a; M7 vs M8
- Bayes Empirical Bayes (BEB)
 - M2a, M8
 - (which ω class (h) each site is most likely to belong).
- Sitewise likelihood-ratio method (SLR)

Bayes Empirical Bayes (BEB)

		s (BEB) analysis sites (*: P>95%;	**: P>99%)	
	Pr(w>1)	post mean +-	SE for w	
1 M 2 E 3 E 4 P 5 Q 6 S 7 D 8 P	0.007 0.009 0.009 0.125 0.010 0.015 0.015 0.010 0.368	0.156 +- 0.169 +- 0.169 +- 0.893 +- 0.182 +- 0.212 +- 0.180 +- 2.207 +-	0.353 0.353 1.263 0.370 0.436 0.375 2.473	Neutral Positive
9 S 10 V 11 E 12 P 13 P 14 L 15 S 16 Q 17 E	0.007 0.139 0.009 0.091 0.014 0.013 0.009 0.010 0.011	0.160 +- 0.969 +- 0.169 +- 0.722 +- 0.208 +- 0.200 +- 0.178 +- 0.182 +- 0.186 +-	1.480 0.353 1.043 0.450 0.411 0.371 0.370	Purifying

Evolutionary models in action

A real case with

the master

protein of the cell

TP53 protein

- Probably **p53** is the main protein regulating cell division and apoptosis
- Many **mutant forms** are involved in different types of human cancer

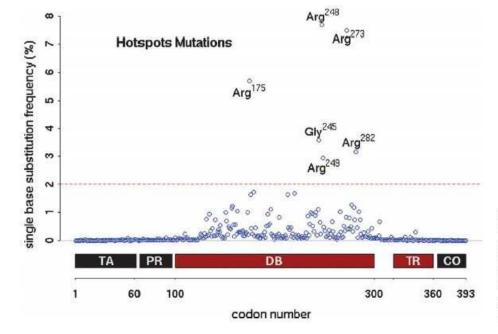
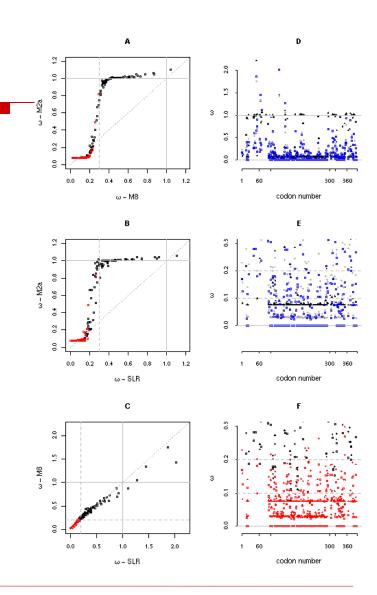



Figure 1. p53 mutations distribution. Mutation frequencies collected in the IARC TP53 R10 database (18,145 non-synonymous mutations) are plotted against the protein domains. The DNA-binding (p53DB) domain contains six residues considered mutational hotspots in cancer.

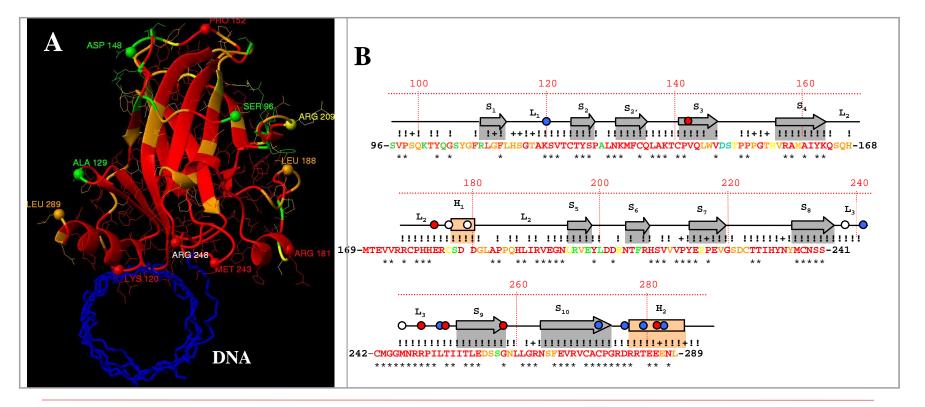
Evolutionary Models in TP53

- M1a vs M2a -> no PS
- M7 vs M8 -> no PS
- • $logL_{(M2a)}$ > $logL_{(M8)}$ -> **best
- SLR -> Other alternative method
 (multiple testing 95%, 99%)
- ----, -----
- +++, ++++

TP53 Evolutionary Analysis

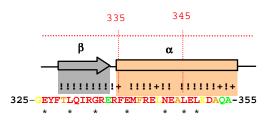
DB and TR domains have the lowest ω value distribution

p53 alignment			Mutations			ω statistics			
Domains	Codons	Indels ^a	Total	Mps ^b	Model	Min.	Median	Mean	Max.
TA	1-60	38	96	1.6	M8	0.030	0.334	0.379	1.747
					SLR	0.000	0.269	0.369	1.865
PR	61-97	22	151	4.2	M8	0.029	0.314	0.376	1.338
					SLR	0.000	0.307	0.376	1.447
DB	100-300	5	17,389	87.0	M8	0.027	0.039	0.116	1.423
					SLR	0.000	0.029	0.095	2.018
TR	325-355	0	178	5.1	M8	0.028	0.067	0.126	0.456
					SLR	0.000	0.068	0.103	0.379
CO	361-393	11	18	1.6	M8	0.027	0.216	0.255	0.878
					SLR	0.000	0.176	0.226	0.882


Table 1. Summary of p53 domains, mutations and ω statistics according to M8 and SLR models

Mutations were deduced from the IARC TP53 database.

^a Insertions/deletions. ^b Mean number of mutations per site.


DNA-binding domain evolutionary and biological analysis

SLR: $\omega \le 0.1, 0.1 < \omega \le 0.2, 0.2 < \omega \le 0.3, \omega > 0.3$

TR-domain evolutionary and biological analysis

A 325 GLY 325 GLY 332 ILE 330 LEU 332 ILE 345 ASN 340 MET 340 MET 340 MET 340 MET 345 ASN 345 ASN 332 ILE 332 ILE 330 LEU 325 GLY 325 GLY

SLR: $\omega \le 0.1, 0.1 < \omega \le 0.2, 0.2 < \omega \le 0.3, \omega > 0.3$

How effective is natural selection ?

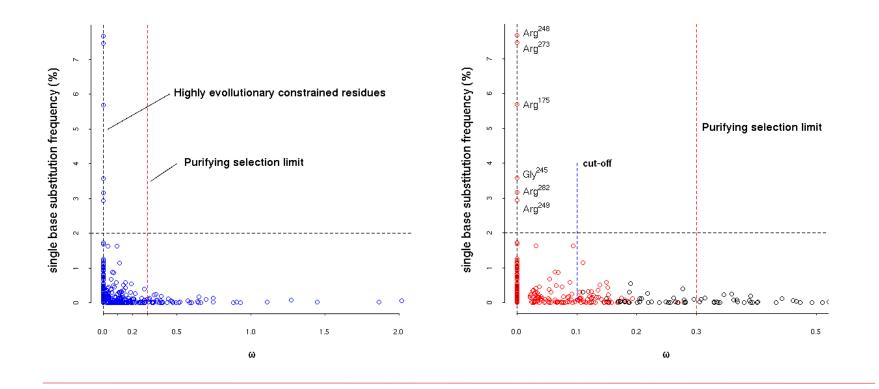
§ Evolutionary biologists recognized that natural selection works in proportion to the number of deleterious mutations in the population

p53	Model	ω>0.3	$0.2 \le \omega < 0.3$	$0.1 \le \omega < 0.2$	$\omega < 0.1$	^a SLR*	$b_{\omega_{M8}}$	$^{c}\omega_{SLR}$	dPC
Full protein	M8	570	382	1714	15,165	16,883	13,028	12,992	13,152
		9.5	13.2	35.0	87.7				
	SLR	430	250	1495	15,656	87.0	119.5	120.3	120.6
		8.6	11.4	25.3	87.0				
DB	M8	437	337	1669	14,814	16,471	12,998	12,952	13,112
		23	25.9	50.6	113.1				
	SLR	306	223	1436	15,292	99.2	139.6	140.8	141.0
		20.4	31.9	36.8	113.3				
TD	M8	8	7	12	152	164	30	30	30
		2.0	2.3	2.4	7.6				
	SLR	6	8	6	158	6.3	5	4.3	4.3
		2.0	2.5	1.5	7.5				

Table 2. Summary of the number of mutations, and mutations per residue (bold), in p53 and 2 domains evaluated under different categories of selective constraints

Note that PC residues show higher values of mutations per residue (120.6 and 141.0 for p53 and p53DB) although SLR* contains a higher number of sites with statistical evidence of strong purifying selection (228 and 166). The increasing number of mutations per residue observed in ranges of ω with higher selective constraints demonstrates that natural selection works in proportion to the number of mutations in the population (see the text).

* Residues under the constraints of purifying selection evaluated by the SLR method at 95% and 99% statistical confidence.


^b Residues with $\omega_{M8} \leq 0.033$.

^c Residues with $\omega_{SLR}=0$.

^d Residues phylogenetically conserved throughout the p53 alignment.

TP53 mutation freq. and selective constraints

According to the theory this will follow an "L" shape curve

The Main Question again

p53 results seem to show good signals, however,

Is it possible to obtain a specific predictor of the more frequent amino acid changes associated to human diseases?

Bioinformatics and evolutionary analysis

- Analyse DB containing codon mutation frequencies for all the possible human diseases proteins
 - Immune deficiency and cancer (COSMIC) databases (approx. 250 genes)
- **Ensembl-orthologous genes in different species**
 - Mammals and Vertebrates
- Evolutionary ML analysis
 - (M1a, M2a, M7, M8, SLR)
- Statistical tests (KS)
 - reject genes with <10 mutations</p>

ω and frequency distribution of Immune and Cancer mutations

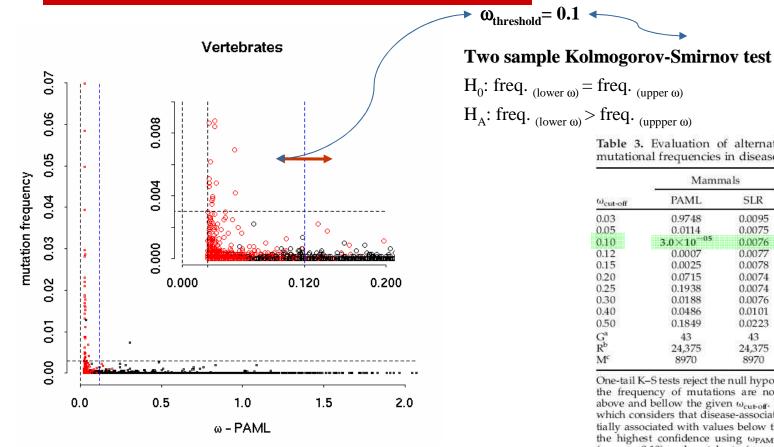
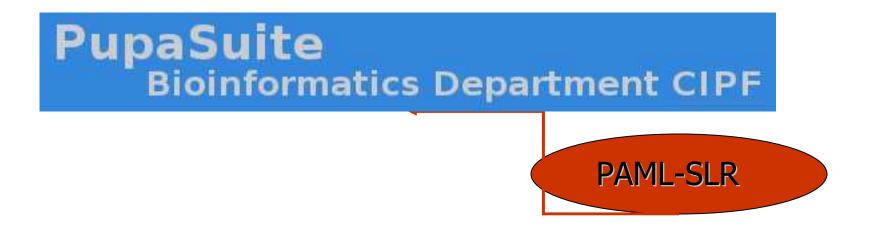


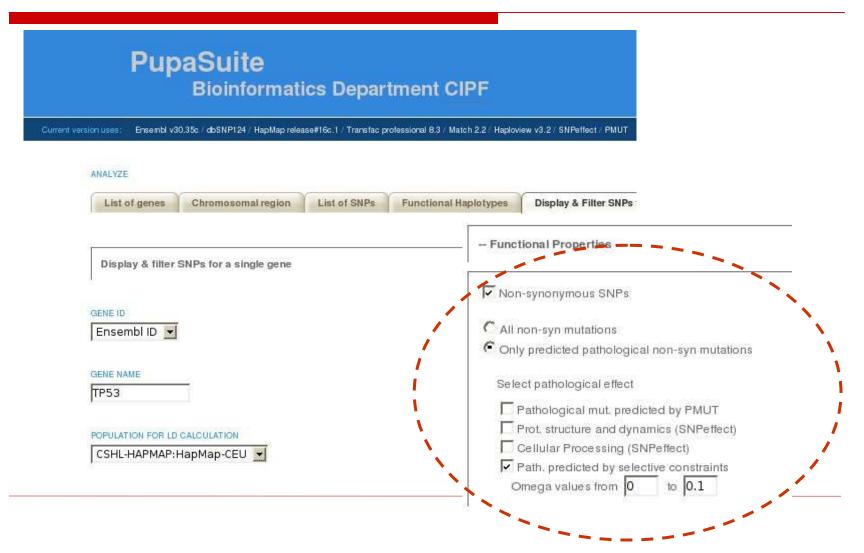
Table 3. Evaluation of alternative $\omega_{cut-off}$ values and mutational frequencies in disease

	Mamm	als	Vertebrates		
ω _{cut-off}	PAML	SLR	PAML	SLR	
0.03	0.9748	0.0095	0.0504	0.0061	
0.05	0.0114	0.0075	0.0026	0.0008	
0.10	3.0×10^{-05}	0.0076	0.0016	0.0009	
0.12	0.0007	0.0077	0.0010	0.0023	
0.15	0.0025	0.0078	0.0012	0.0018	
0.20	0.0715	0.0074	0.0019	0.0019	
0.25	0.1938	0.0074	0.0044	0.0043	
0.30	0.0188	0.0076	0.0035	0.0065	
0.40	0.0486	0.0101	0.0176	0.0254	
0.50	0.1849	0.0223	0.0534	0.1010	
G ^a R ^b	43	43	43	43	
R ^b	24,375	24,375	17,424	17,435	
M ^c	8970	8970	8081	8083	

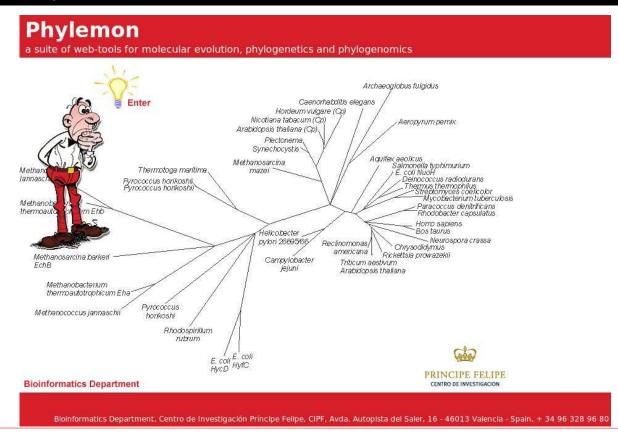

One-tail K-S tests reject the null hypothesis, which considers that the frequency of mutations are not differentially distributed above and bellow the given $\omega_{cut-off}$. The alternative hypothesis, which considers that disease-associated mutations are preferentially associated with values below the $\omega_{cut-off}$ is accepted with the highest confidence using wPAML estimations on mammal $(\omega_{cut-off}=0.10)$ and vertebrate $(\omega_{cut-off}=0.12)$ datasets. The K-S test on SLR estimates reject the null hypothesis for all values of wcut-off evaluated. This is the consequence of the undesirable behaviour of the SLR method, which drops low values of ω to 0 (see the text and Figure 6 for explanation).

- ^a Number of genes evaluated.
- ^b Number of residues evaluated.
- ^c Number of mutations evaluated.

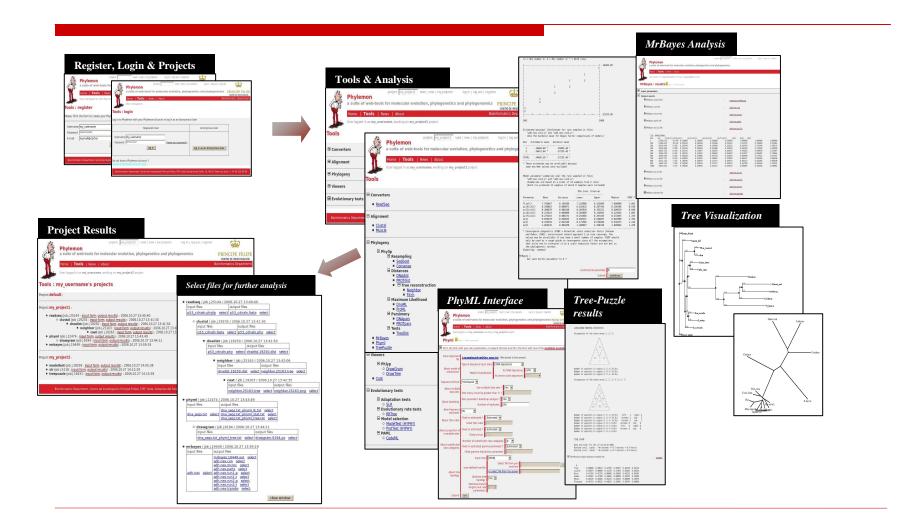
Conclusions III


- We have found an evolutionary parameter that allows to differentiate amino acids where disease is more frequent
- This parameter is a measure of the action of natural selection working on vertebrate species during million years
- We hypothesize that non-synonymous changes on amino acids showing $\omega < 0.1$ probably affects the normal function of proteins
- Recently we confirmed this results using more than 3,000 proteins
- **Disease and polymorphisms are differentiated using ω values**

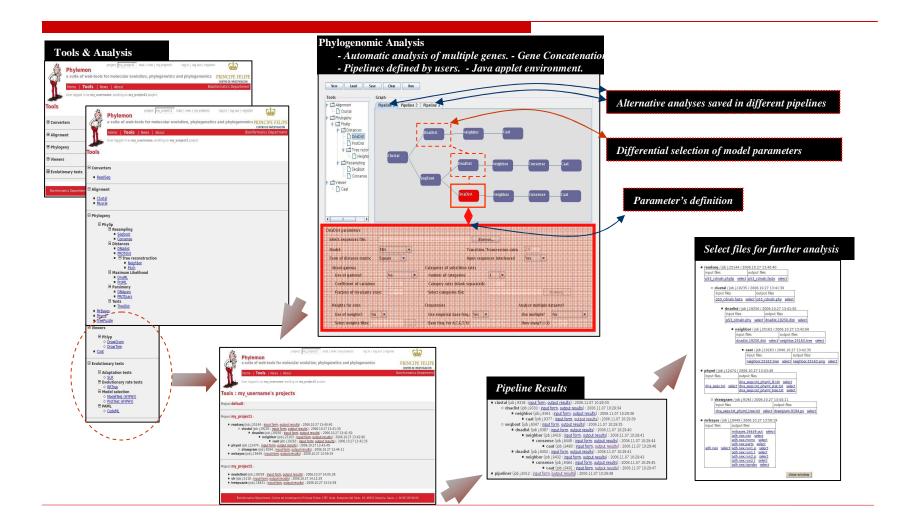
Selective constraints on all the cSNP's of the Human Genome


Evolutionary Models

Bioinformatic Tool: SNP's probable associated to mendelian diseases (NAR, web issue 2006)



Phylogenetics/Phylogenomics


Phylemon server is at: http://phylemon.bioinfo.cipf.es

Phylemon characteristics I: Phylogenetics Analysis

Phylemon characteristics II: Evolutionary -tests/Phylogenomics/Pipelines

Muchas Gracias!!

Micostrium Vulgaris *Phylum:* Chordata *Subphylum:* Vertebrata *Class:* Mammalia